
Find the range of convergence of the series 

Problem 2 (10  points)  
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Final Exam Mathematical Physics, Prof. G. Palasantzas 

 Date 23-06-2017 

 Total number of points 100 

 10 points free for coming to the final exam 

 Justify your answers for all problems 

Problem 1 (10 points)  

Prove that the series                          is convergent 
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Suppose a mass m is attached to a spring with spring constant k and let                   .   If   an external force                                   

                                 is applied,  then the equation of motion for non-zero dissipation (c>0) has the form: 

Problem 3 (20 points)  
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Find the sine Fourier series solution to the differential equation                                    with k  an integer,  f(x)  an odd  

 

function [ f(x)=-f(-x)], and the boundary conditions y(0)=y(L)=0 

  

Problem 6 (15 points)  
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 Consider also the Fourier Transform  definition  of the Dirac Delta function: 

Problem 5 (15 points)  

Derive  the Fourier Transform of : (a: 5 points)                                      , (b: 10 points)  ]4cos[)( xkxf o
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(a: 10 points) Calculate  the Fourier Transform F(k) of the function:  
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Assume a function f(x) to have the Fourier transform: 

(b: 10 points) For     F(k)     from (a)  calculate                            by taking into account the  definition of  
 

the Dirac delta function,                                                            ,  and                                          .   

)(lim 0 kFa

||/)()( cwcw   ]/[lim)/1()( 22

0 awaw a  



Problem 2 

Range of convergence is (a-b, a+b) 
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n Is a convergent geometric series with x=1/5<1.  

 
Therefore, using the comparison test in comparison to the geometric 
 
 series, our series is absolute convergent and thus                       is convergent  
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Problem 3 

In the following replace 0 with  and you have the solution:  
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Problem 4 

(a) 

(b)  

Separate the real and imaginary parts of the Fourier transform from (a) 
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Problem 5 

(a) Here you can substitute directly to calculate the Fourier transform, so you have 
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(b) Here you can substitute directly to calculate the Fourier transform, so you have 
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Problem 6 In the following replace m with k and you have the solution 
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