Final Exam Mathematical Physics, Prof. G. Palasantzas

- Date 23-06-2017
- Total number of points 100
- 10 points free for coming to the final exam
- Justify your answers for all problems

Problem 1 (10 points)

Prove that the series $\sum_{n=0}^{\infty} \frac{\sin ^{2}(n x)}{2+5^{n}}$ is convergent

Problem 2 (10 points)

Find the range of convergence of the series $\sum_{n=1}^{\infty} \frac{n}{b^{n}}(x-c)^{n} \quad(b>0)$

Problem 3 (20 points)

Suppose a mass m is attached to a spring with spring constant k and let $k=m \omega_{o}{ }^{2}$. If an external force $F(t)=F_{o} \cos (\omega t)$ is applied, then the equation of motion for non-zero dissipation $(c>0)$ has the form:

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+k x=F(t) \tag{1}
\end{equation*}
$$

$\left.\begin{array}{l}\text { Using the method of undermined coefficients to prove that } \\ \text { a particular solution of Eq. (1) }\left(c^{2}-4 m k<0\right) \text { is given by: }\end{array}\right\} x_{p}(t)=\left\{\frac{F_{o}}{\sqrt{\left(k-m \omega^{2}\right)^{2}+(c \omega)^{2}}}\right\} \cos (\omega t+\delta)$ Tip : $x(t)=c_{1} \cos (\omega t)+c_{2} \sin (\omega t)=A \cos (\omega t+\delta)$ with $\mathrm{A}=\sqrt{c_{2}{ }^{2}+c_{1}{ }^{2}}$ and $\tan \delta=-c_{2} / c_{1}$

Problem 4 (20 points) Assume a function $f(x)$ to have the Fourier transform: $F(k)=\int_{-\infty}^{+\infty} f(x) e^{-i 2 \pi k x} d x$
(a: 10 points) Calculate the Fourier Transform $F(k)$ of the function: $f(x)= \begin{cases}e^{-a x} & \text { for } \mathrm{x} \geq 0 \\ 0 & \text { for } x<0\end{cases}$
(b: 10 points) For $\quad F(k) \quad$ from (a) calculate $\lim _{a \rightarrow 0} F(k)$ by taking into account the definition of the Dirac delta function, $\delta(w)=(1 / \pi) \lim _{a \rightarrow 0}\left(a /\left[w^{2}+a^{2}\right]\right)$, and $\delta(c w)=\delta(w) /|c|$.

Problem 5 (15 points) Assume a function $f(x)$ to have Fourier Transform: $F(k)=\int_{-\infty}^{+\infty} f(x) e^{-i 2 \pi k x} d x$
Consider also the Fourier Transform definition of the Dirac Delta function $\delta(k)=\int_{-\infty}^{+\infty} e^{-i 2 \pi k x} d x$
Derive the Fourier Transform of : (a: 5 points) $f(x)=\cos \left[4 \pi k_{o} x\right]$, (b: 10 points) $f(x)=\cos ^{2}\left[4 \pi k_{o} x\right]$ Tip: $\cos (x)=\left(e^{i x}+e^{-i x}\right) / 2$

Problem 6 (15 points)

Find the sine Fourier series solution to the differential equation $\frac{d^{2} y}{d x^{2}}+k y=f(x)$ with k an integer, $f(x)$ an odd function $[f(x)=-f(-x)]$, and the boundary conditions $y(0)=y(L)=0$

Tip : The Fourier sine expansion has the form $Y(x)=\sum_{n=1}^{\infty} b_{n} \sin (n \pi x / L), b_{n}=(2 / L) \int_{0}^{L} Y(x) \sin (n \pi x / L) d x$, for $\mathrm{x} \in[0, \mathrm{~L}]$

Problem 1

We have $\left|\frac{\sin ^{2}(n x)}{2+5^{n}}\right| \leq \frac{1}{2+5^{n}}<\frac{1}{5^{n}} \quad 5$ points
$\sum_{n=0}^{\infty} \frac{1}{5^{n}}$ Is a convergent geometric series with $x=1 / 5<1$.
Therefore, using the comparison test in comparison to the geometric
series, our series is absolute convergent and thus $\sum_{n=0}^{\infty} \frac{\sin ^{2}(n x)}{2+5^{n}}$ is convergent 5 points

Problem 2

$$
a_{n}=\frac{n}{b^{n}}(x-a)^{n}, \text { where } b>0 .
$$

$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)|x-a|^{n+1}}{b^{n+1}} \cdot \frac{b^{n}}{n|x-a|^{n}}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right) \frac{|x-a|}{b}=\frac{|x-a|}{b} . \quad 5$ points
By the Ratio Test, the series converges when $\frac{|x-a|}{b}<1 \Leftrightarrow|x-a|<b \quad[$ so $R=b] \Leftrightarrow-b<x-a<b \Leftrightarrow$
$a-b<x<a+b$. When $|x-a|=b, \lim _{n \rightarrow \infty}\left|a_{n}\right|=\lim _{n \rightarrow \infty} n=\infty$, so the series diverges. Thus, $I=(a-b, a+b)$.

In the following replace ω_{0} with ω and you have the solution:

$$
\begin{align*}
& m \frac{d^{2} x}{d t^{2}}+C \frac{d x}{d t}+H x=F_{0} \cos \omega_{0} t(1) \tag{3}\\
& X_{p}(t)=A\left(\omega_{0}\right) \cos \left(\omega_{0} t\right)+B\left(\omega_{0}\right) \sin \left(\omega_{0} t\right) \tag{4}\\
& \operatorname{sub} \operatorname{stitute} \text { in }(1)=P \tag{5}\\
& m\left(-A \omega_{0}^{2} \cos \omega_{0} t-B \omega_{0}^{2} \sin \omega_{0} t\right)+\left(-A C \omega_{0} \sin \omega_{0} t+\right. \\
& \left.+B C \omega_{0} \cos \omega_{0} t\right)+K\left(A \cos \omega_{0} t+B \sin \omega_{0} t\right)= \tag{6}\\
& F \cos \omega_{0} t=P \\
& {\left[\left(k-m \omega_{0}^{2}\right) A+C B \omega_{0}\right] \cos \omega_{0} t+} \\
& {\left[\left(k-m \omega_{0}^{2}\right) B-C A \omega_{0}\right] \sin \omega_{0} t=F_{0} \cos \omega_{0} t(2)} \tag{7}\\
& 5 \text { points }
\end{align*}
$$

$$
(2) \Longrightarrow
$$

$$
\begin{aligned}
& \left(k-m \omega_{2}^{2}\right) A+C B \omega_{0}=F_{0} \\
& \left(H-m \omega_{0}^{2}\right) B-C A \omega_{0}=0
\end{aligned}
$$

$$
(21)=p
$$

$$
B=A \frac{c w_{c}}{k-m w_{c}^{2}}
$$

substitute (5) into (3) $=$?

$$
\begin{aligned}
& A=\frac{F_{0}\left(h-m \omega_{0}^{2}\right)}{\left(k-m \omega_{c}^{2}\right)^{2}+\left(c \omega_{0}\right)^{2}} \\
& -B=\frac{F_{0} c \omega_{0}}{\left(k-m \omega_{0}^{2}\right)^{2}+\left(c \omega_{0}\right)^{2}} \quad \text { (7) }
\end{aligned}
$$

The particular solution cam be written a) $X_{p}(t)=\widetilde{A}\left(\omega_{c}\right) \cos \left(\omega_{0} t+\delta\right)$
with $\tilde{A}(\omega)=\sqrt{A^{2}+B^{2}}=\frac{F_{0}}{\sqrt{\left(k-m \omega_{0}^{2}\right)^{2}+\left(c \omega_{0}\right)^{2}}} 5$ points

$$
\begin{aligned}
& \tan \delta=-\frac{B}{A}=-\frac{c \omega_{0}}{K-m \omega_{0}^{2}}=p \\
& \delta=\tan ^{-1}\left\{\frac{C \omega_{0}}{m \omega_{0}^{2}-k}\right\}
\end{aligned}
$$

Problem 4
(a)

$$
\begin{aligned}
& \mathcal{F}[f(x)]=\int_{0}^{\infty} e^{-\alpha x} e^{-j 2 \pi k x} d x \\
& f=\int_{0}^{\infty} e^{-(\alpha+j 2 n k) x} d x=-\frac{1}{\alpha+j 2 n k}\left[\left.e^{-(\alpha+j 2 n \pi) x}\right|_{x-0} ^{\infty}\right] 5 \text { points } \\
& \mathcal{F}=+\frac{1}{\alpha+j 2 n k} 5 \text { points }
\end{aligned}
$$

(b) $\delta(x)=\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0} \frac{\varepsilon}{x^{2}+\varepsilon^{2}}$

Separate the real and imaginary parts of the Fourier transform from (a)

$$
\begin{aligned}
& \frac{G}{f}=\frac{\alpha-j 2 \pi k}{\alpha^{2}+(2 \pi k)^{2}}=\frac{\alpha}{\alpha^{2}+(2 n k)^{2}}-j \frac{2 \pi \hbar}{a^{2}+(2 \pi k)^{2}} \quad 5 \text { points } \\
& \lim _{\alpha \rightarrow \infty} f=\underbrace{\lim _{\alpha \rightarrow 0} \frac{\alpha}{\alpha^{2}+(2 n n)^{2}}}_{\cap \delta(2 n k)}-\frac{3}{\varepsilon n k}\}=p \\
& \left.\begin{array}{ll}
\lim _{\alpha \rightarrow 0} f=n \delta(\varepsilon n k)-\frac{j}{2 \pi k} \\
\delta(2 n k)=\frac{1}{\varepsilon \pi} \delta(H)
\end{array}\right] \begin{array}{l}
5 \text { points } \\
F\left[\lim _{a \rightarrow \infty} f(x)\right]=\frac{1}{2}\left[\delta(k)-\frac{j}{n k}\right]
\end{array}
\end{aligned}
$$

Problem 5

(a) Here you can substitute directly to calculate the Fourier transform, so you have

$$
F(k)=\frac{1}{2}\left[\int_{-\infty}^{+\infty} e^{-i 2 \pi\left(k-2 k_{o}\right) x} d x+\int_{-\infty}^{+\infty} e^{-i 2 \pi\left(k+2 k_{o}\right) x} d x\right]=\frac{1}{2}\left\{\delta\left(k-2 k_{o}\right)+\delta\left(k+2 k_{o}\right)\right\} \quad 5 \text { points }
$$

(b) Here you can substitute directly to calculate the Fourier transform, so you have

$$
F(k)=\frac{1}{4}[\int_{\underbrace{-\infty}}^{+\infty} e^{-i 2 \pi\left(k-4 k_{o}\right) x} d x+\int_{-\infty}^{+\infty} e^{-i 2 \pi\left(k+4 k_{o}\right) x} d x+2 \int_{-\infty}^{+\infty} e^{-i 2 \pi d x} d x]=\underbrace{\frac{1}{4}\left\{\delta\left(k-4 k_{o}\right)+\delta\left(k+4 k_{o}\right)+2 \delta(k)\right\}}_{5 \text { points }}
$$

Find the solution ${ }^{*}$ of the differention equation $y^{\prime \prime}+m y=f(x), \quad m$ is integer, $f(x)=-\delta(-x)$ [odd function]

Under the conditions $y(0)=y(x=L)=0$

* Sine solution.

$$
y(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Torte $f(x)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n n x}{L}\right), \quad c_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n n x}{L}\right) d x$

$$
\begin{equation*}
y^{\prime \prime}(x)=\sum_{n=1}^{\infty}\left(-\left(\frac{n \pi}{L}\right)^{2}\right) b_{n} \sin \left(\frac{n n x}{L}\right) \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& y^{\prime \prime}(x)=\sum_{n=1}^{\infty}\left(-\left(\frac{n n}{l}\right)^{2}\right) y^{\prime \prime}+m y=f(x) \text { gives } \\
& \text { substitution into }
\end{aligned}
$$

$$
\begin{aligned}
& \text { substitution in +0 } y^{\prime \prime}+m y=f(x) \quad \text { gives } \\
& \sum_{n=1}^{\infty}\left[-b_{n}\left(\frac{n n}{L}\right)^{2}\right] \sin \left(\frac{n n x}{L}\right)+\sum_{n=1}^{\infty} m b n \sin \left(\frac{n n x}{L}\right)=\sum_{n=1}^{\infty} \operatorname{cn} \sin \left(\frac{n n x}{L}\right) \quad 5 \text { points } \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left[-b_{n}\left(\frac{n n}{L}\right)^{2}\right] \sin (L) \quad v x \in[0, L] \\
& \left.\sum_{n=1}^{\infty}\left\{b_{n}\left[m-\left(\frac{n \pi}{L}\right)^{2}\right]-c_{n}\right\} \sin \left(\frac{n n x}{L}\right)=0 \quad(n n)^{2}\right]-c_{n}=0=p
\end{aligned}
$$

$$
\left(\begin{array} { c }
{ \sum _ { n = 1 } b _ { n } (m - (L) } \\
{ c _ { n } = [m - (\frac { n \pi } { L }) ^ { 2 }] - c _ { n } = 0 }
\end{array} \quad \left(m \neq\left(\frac{n \pi}{L}\right) .\right.\right.
$$

$$
b_{n}=\frac{c_{n}}{m-\left(\frac{n \pi}{L}\right)^{2}} \quad\left(m \neq\left(\frac{n \pi}{L}\right)^{2}\right) 5 \text { points }
$$

$y(x)=\sum_{n=1}^{\infty} \frac{C_{n}}{m-\left(\frac{n \pi}{L}\right)^{2}} \sin \left(\frac{n \pi x}{L}\right) \quad 5$ points

